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A unique method for measuring the birefringence intensity of colloidal solutions which become anisotropic
under the action of orienting flow is described. When a laser beam crosses a liquid-containing asymmetrical
particle orientated by the flow, the scattered intensity in a direction perpendicular to the wave vector of the
incident light shows nodes and antinodes. The distance between two antinodes is related to the phase difference
between the eigenpolarizations of the medium and thus to the birefringence of the medium.
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In a perfectly transparent and homogeneous medium, a
plane wave will propagate in the direction of its wave vector
without diffusion on the sides. When the medium contains
particles or small regions, the index of refraction of which is
slightly different from the index of the surrounding medium,
the optical homogeneity is lost: light will not only propagate
in the direction of the wave vectork but will be scattered in
every direction in space according to Rayleigh theory.

This scattering phenomenon is also observed in colloidal
solutions of anisotropic particles. When subjected to the ac-
tion of orienting flows, and when the particles also have an
asymmetrical shape, the solution becomes anisotropic and
shows flow-induced birefringence. Although the scattering
and the birefringence both result from the polarization of the
medium under the action of the incident fieldEi and thus
might be correlated, we shall assume that the field in the
anisotropic medium is the sum of an elliptical vibration
propagating in the same direction as the light incident on the
medium plus the scattered field. The linearity of Maxwell’s
equation allows to treat separately the two phenomena.

Our aim is to find the amplitude, or the intensity of the
scattered light, in a medium propagating an elliptical vibra-
tion. To do so we have to solve Maxwell’s equation in the
medium that we shall assume to consist of a homogeneous
isotropic mediumsrefraction indexn1, permittivity e1d con-
taining anisotropic particlessprincipal indexes of refraction
tensornp and principal permittivities tensorepd. To solve this
problem we shall simply follow the development given by
Fuller f1g for anisotropic particles in vacuum. We assume
that the time dependence of the electric fieldEi is a harmonic
function of t and that the space is free of charges; The am-
plitude of the scattered field is given by

ES = k1
2E

V

dx8
expik1r

4pr
exps− ikS·x8dsI − uud

3fnr
2sx8d − I gEsx8d. s1d

k1 is the magnitude of the incident wave vector,kS is the
wave vector of the scattered field, andkS=kSu, whereu is a

unit vector. The distance between the particle and the point
where the scattered wave is observed isr. I is the unit tensor
and nr the tensor of the relative refraction indexes of the
particle,

nr =
np

n1
=Îep

e1
. s2d

Esx8d is the internal field in the medium, sum of the incident
field Eisx8d, and the field resulting from the polarization
E8sx8d. Replacing the index of refraction by the permittivity
in Eq. s1d, the vectorfnr

2sx8d− I g ·Esx8d becomes

1

e1
fesx8d − Ie1gEsx8d. s3d

In Eq. s3d the term in brackets represents the excess of po-
larization due to presence of anisotropic particles in the iso-
tropic substratum. We shall assume that the three principal
indexes of the particle are not too different from the index of
the surrounding mediumn1 so that

npi

n1
. 1, wherei = 1,2,3.

In that case, following van de Hulstf2g the internal field
Esx8d is not too different from the incident electric field since
the contribution to the internal field due to the polarization is
small; Esx8d then reduces to

Eisx8d = niE0 expsik1 ·x8d,

ni is a unit vector and we assume for now that the incident
light in the medium is linearly polarized in the direction of
ni. In an anisotropic medium, this is usually not the case,
light is elliptically polarized and the end ofEi describes an
ellipse; however, as we shall see in the following, when the
phase difference introduced by the anisotropic medium
equalsmp the polarization becomes linear andEi keeps a
fixed direction in space. The scattered amplitude is written as*Electronic address: decruppe@lpli.sciences.univ-metz.fr
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ES = k1
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expik1r

4pr
expf− isk1 − kSd ·x8g
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np
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2 − I dniE0. s4d

All the vectors and tensors in Eq.s4d are expressed in the
principal axis coordinates systemOX1X2 ssee Fig. 1d, thusnp
is a diagonal tensor, the elements of which are three scalar
quantities;u andni are unit vectors and do not depend on the
variablex8.

The vectorsI −uudfsnp
2/n1

2d− I gni is thus independent of
x8 and can be removed from the integral.

In the following we shall callN1 the vector,

N1 = Snp
2

n1
2 − IDni . s5d

It can easily be shown that

sI − uudN1 = u 3 su 3 N1d.

Finally, the amplitude of the scattered field takes the simper
form,

ES = k1
2E0

expsik1rd
4pr

fu 3 su 3 N1dgS, s6d

where S=evdx8exps−iq·x8d. When N1 is parallel tou, the
scattered amplitude and consequently the scattered intensity,
is zero; thus for an observer looking in the directionN1, he
should see no scattered light: an antinode will appear in the
scattered pattern. It should be remembered that usuallyni
and consequentlyN1 do not keep a fixed direction since the
polarization is elliptical and the observer will see an average
intensity kESES

* l different from zero; however, as already
quoted, when the phase difference equalsmp the vibration
becomes linear,N1 has a time-independent direction, and the
scattered intensity is zero in that direction.

For simplicity, we shall restrict our calculation to a wave
propagating in the Oz directionsthe same asOX3d and look
at the scattered light in a direction perpendicular to Oz in the
planep; thus anyu has two components in the frame of the
principal axis. As shown in Eq.s5d, in an anisotropic me-
dium, N1 is not parallel toni, the unit vector defining the
direction of the incident field except when the light incident
on the medium is linearly polarized in one of the two eigen-
polarization directions. But this case is of no practical inter-
est since the polarization will remain linear through all the
sample. The scattering particles are not only anisotropic but

also have asymmetrical shape. The surrounding medium is a
solventsusually waterd and the solution is subjected to flow
in a shearing cell. We shall assume that the mean refraction
index of the particle is not too different from the index of the
solvent so that structural contribution to the birefringence
can be neglected. This assumption relies on the stress optical
rule which applies to the samples studied in this work, at
least in the range of shear rates investigated.

Under the action of the hydrodynamical field, all the par-
ticles will take, on average, the same orientation and the
solution will become birefringent; as concerns light propaga-
tion it will behave exactly like a biaxial crystal with three
principal axes that we shall assume to be the same as the
systemOX1X2X3 fixed to a single particlesthis assumption
relies on the fact that all the particles in the medium will take
the same average orientationd. In the case of Couette flow,
the average orientation is characterized by the so-called ex-
tinction anglex defined as the smallest angle between the
direction of the flow and one of the principal directionsalso
called neutral lined in the plane of the flow. Good examples
of such anisotropic liquids are micellar solutions which often
show very strong birefringence even under rather weak
shearing conditionsf4g. In that case the classical method of
Senarmontf3g often is useless. We shall see that the pattern
of the scattered intensity will lead to a very simple way of
finding the birefringence of these solutions. The birefrin-
genceDn is related to the phase differencefszd between the
two eigenpolarizations of the medium by the simple relation

Dn =
fszdl
2pz

, s7d

wherel is the wavelength of the light andz the thickness of
the sample.

In a purely birefringent medium, the eigenpolarizations
are two linearly polarized vibrations at right angles which
propagate at different velocitiessv1Þv2d; thus any linearly
polarized light incident upon the anisotropic medium can be
resolved in these two linear vibrations which oscillate in
phase at the entrance of the medium but show a phase dif-
ferencefszd after traveling a certain distancez inside; thus
the vibrationEi is elliptical except forf=mp. In these cases
the vibrations are linear and their direction is one of the two
directions given by

ni = u1 cosa ± u2 sina, s8d

whereu1 andu2, respectively, are unit vectors alongOX1 and
OX2 anda is the angle betweenEi andOX1.

These are the directions of the two diagonals of the rect-
angle containing the ellipse that will give the two directions
in which we shall observe antinodes in the scattered pattern.
Figure 2 is a view of the Couette cell used in these Rayleigh
scattering experiments. The outer wall is made of glass while
the inner cylinder is manufactured in a dark black material to
prevent unwanted reflections. The height of the cell is 73 mm
and the width of the gap 1.5 mm. An antinode is clearly seen
in the upper part of the cell approximately at 2/3 of the
height. Two birefringent samples have been prepared for

FIG. 1. Coordinates system:OX1, OX2, OX3 principal axis of
the particles.
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these experiments: a solution of CTAB/NaSal at 30/230
mmol and a solution of CTAB/NaNO3 at 300/405 mmol.

In Fig. 3 some of the different states of polarization that
exist in the anisotropic medium have been sketched together
with the image of the laser beam in a direction in which
antinodes can be observed. As light enters the cellstop of
Fig. 3d and propagates in the anisotropic medium, its polar-
ization goes through all the different states and periodically
becomes linearly polarized when the phase retardation equals
mp; the directions of vibrations are then given by Eq.s8d and
antinodes are observed in these particular directions; the first
one is encountered forf=p ssee the left part of Fig. 3d, the
second one forf=2p, and so onsright part of Fig. 3d.

The phase difference between two consecutive antinodes
appearing in the direction of observation is 2p while it is
only p between two consecutive antinodes found in the di-
rection of the two diagonals of the rectangle containing the

ellipse. Thus, by merely measuring the distance between two
antinodes, the birefringence intensity can be readily com-
puted with the help of Eq.s7d.

One can follow on Fig. 4 the evolution of the scattered
intensity pattern when the shear rate is increased in a Couette
cell. Light is traveling from top to bottom and antinodes
corresponding to phase retardation ofmp are clearly ob-
served in the vorticity direction. Considering the first antin-
ode for each value of the shear rate we notice that the length
of the bright needlelike part gets shorter and shorter asġ
increases, thus clearly showing the change in the birefrin-
gence intensity; for the highest values ofġ second-order an-
tinodes corresponding tok=1,2, . . . ,start to appear. In order
to measure conveniently the distance between the entrance
and the first antinode, or between two consecutive antinodes,
the patterns are analyzed in a gray level scale, the intensity
profile is readily drawn, and the quantitative measurements
performed.

Figure 5 presents experimental results of birefrigence in-
tensity measurements performed with the two different tech-
niques: measurement of the distance between two antinodes
in the pattern of the scattered intensity and the method of
Senarmont. This latter merely consists of finding the elliptic-
ity c of the vibration which has traveled a definite distance
sthe height or length of the shearing deviced in the material.
c is half the phase differencef introduced between the two
eigenpolarizations. These variations are plotted as a function
of the shear rateġ and as can be seen this sample already
shows high birefringence even under rather weak shearing
conditions. The plot speaks for itself: the agreement between
both sets of results is fairly good, especially in the low shear
rates domain.

FIG. 2. Glass Couette cell with the inner cylinder rotating and
laser beam crossing a colloidal solution in a direction parallel to the
vorticity; a node corresponding to a phase difference ofp is clearly
seen in the upper half of the cell.

FIG. 3. Variation of the state of polarization of light in the gap
of a Couette cell and scattered intensity in two directions in the
plane sv , =vd perpendicular to the vorticity. Nodes and antinodes
corresponding to phase difference ofmp are clearly observed.

FIG. 4. Changes in the Rayleigh scattering pattern when the
shear rate is gradually increased in the gap of a Couette cellsthe
figures give the values of the shear rate in S−1d. Light propagates
from top to bottom over a length of 73 mm.

FIG. 5. Birefringence intensityDns3107d vs the shear rate: open
squares correspond to the method of Senarmont and open circles to
the scattering pattern method.
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Apart from this simple way of measuring the phase retar-
dation of an anisotropic solution without first having to know
the orientation of the mediumx, as necessary in the method
of Senarmont, this technique also allows for the determina-
tion of the angle of extinction. For a given direction of rota-
tion of the moving cylinder, one of the principal axessOX2,
for exampled will make the anglex with the line of flow
which is the reference for the angles in the case of Couette
flow; for the reverse direction,OX2 will take the symmetrical
orientation with respect to the line of flow: thus the angle
between the directions in which we observe two antinodes
for the same shear rate will be twice the anglex. In Fig. 6 we
report scattering patterns obtained with the second solution

sCTAB/NaNO3d in which shear banding occurs. The shear
rate is 20s−1 in a gap 1.5-mm wide. Two different views of
the gap are proposed: the top one is taken in the plane
sv , =vd, the bottom one is a cross section in the plane
sv , =vd. To realize the top view, a thin beam of parallel
monochromatic polarized light illuminates the whole gap
which appears divided in two layerssh and l band f6gd as
predicted by the theoryf5g; in the bottom view, a polarized
laser beam is sent successively through both bands. In thel
band sleft part of Fig. 6, the pattern is a sequence of thin
bright needlelike segments separated by antinodes; the phase
retardation between two consecutive nodes in the same di-
rection u being 2p, the birefringence intensity is readily
computed. In theh band, near the moving wallssee the right
part of Fig. 6d, the thin segments are changed into much
closer bright blobs, indicating that the birefringence is sev-
eral times higher than in thel band. Moving the beam to-
wards the frontier between the two layerssdotted lined does
not significantly alter the distance between antinodes in both
layers; this tends to confirm that the shear rate is constant but
different in theh and l bands as predicted by the theory.

In summary, this paper presents a very simple method for
the determination of the anisotropic properties of a solution
containing asymmetrical particles. It will allow for an easy
and simple way of measuring the flow-induced phase retar-
dation without having to know at first the orientation of the
medium which is a prerequisite in the method of Senarmont.
But it will also lead to the orientation anglex as previously
mentioned. However, this method will not give the sign of
the shear-induced retardation. This technique will also prove
to be interesting in transient optical experiments when the
phase retardationf often reaches several times 2p, espe-
cially when the time-dependent behavior of the optical prop-
erties shows complicated features like overshoots, sigmodal
relaxation, or damped oscillations. In that case, the analysis
of the periodical signal of the transmitted intensityfI / I0

=sin2 sf /2dg does not allow for the calculation off without
ambiguity in particular during the relaxation of the steady
state. Besides, this method is also very useful in shear band-
ing experiments in order to find the birefringence of the
shear-induced phase, measurements which were not made
before. It will prove to be helpful each time the phase retar-
dation induced in an anisotropic medium exceeds 2p like in
many surfactants systems, liquid crystals, or polymer melts.
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FIG. 6. sColor onlined Two views of the gap in a Couette cell:
the top one in thesv , =vd plane, bottom one in thesv , =vd plane.
mw, fw mean moving and fixed wall,v is the vorticity direction.
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